Continuous Functions on Real and Complex Normed Linear Spaces
نویسنده
چکیده
The notation and terminology used here are introduced in the following papers: [25], [28], [29], [4], [30], [6], [14], [5], [2], [24], [10], [26], [27], [19], [15], [12], [13], [11], [31], [20], [3], [1], [16], [21], [17], [23], [7], [8], [22], [18], and [9]. For simplicity, we use the following convention: n denotes a natural number, r, s denote real numbers, z denotes a complex number, C1, C2, C3 denote complex normed spaces, and R1 denotes a real normed space. Let C4 be a complex linear space and let s1 be a sequence of C4. The functor −s1 yields a sequence of C4 and is defined by: (Def. 1) For every n holds (−s1)(n) = −s1(n). The following propositions are true: (1) For all sequences s2, s3 of C1 holds s2 − s3 = s2 + −s3. (2) For every sequence s1 of C1 holds −s1 = (−1C) · s1. Let us consider C2, C3 and let f be a partial function from C2 to C3. The functor ‖f‖ yielding a partial function from the carrier of C2 to R is defined by: (Def. 2) dom‖f‖ = dom f and for every point c of C2 such that c ∈ dom‖f‖ holds ‖f‖(c) = ‖fc‖. Let us consider C1, R1 and let f be a partial function from C1 to R1. The functor ‖f‖ yielding a partial function from the carrier of C1 to R is defined as follows: (Def. 3) dom‖f‖ = dom f and for every point c of C1 such that c ∈ dom‖f‖ holds ‖f‖(c) = ‖fc‖.
منابع مشابه
Embedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملUniform Continuity of Functions on Normed Complex Linear Spaces
For simplicity, we follow the rules: X, X1 denote sets, r, s denote real numbers, z denotes a complex number, R1 denotes a real normed space, and C1, C2, C3 denote complex normed spaces. Let X be a set, let C2, C3 be complex normed spaces, and let f be a partial function from C2 to C3. We say that f is uniformly continuous on X if and only if the conditions (Def. 1) are satisfied. (Def. 1)(i) X...
متن کاملON APPROXIMATE CAUCHY EQUATION IN FELBIN'S TYPE FUZZY NORMED LINEAR SPACES
n this paper we study the Hyers-Ulam-Rassias stability of Cauchyequation in Felbin's type fuzzy normed linear spaces. As a resultwe give an example of a fuzzy normed linear space such that thefuzzy version of the stability problem remains true, while it failsto be correct in classical analysis. This shows how the category offuzzy normed linear spaces differs from the classical normed linearspac...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007